Fast Training of Effective Multi-class Boosting Using Coordinate Descent Optimization
نویسندگان
چکیده
We present a novel column generation based boosting method for multi-class classification. Our multi-class boosting is formulated in a single optimization problem as in [1, 2]. Different from most existing multi-class boosting methods, which use the same set of weak learners for all the classes, we train class specified weak learners (i.e., each class has a different set of weak learners). We show that using separate weak learner sets for each class leads to fast convergence, without introducing additional computational overhead in the training procedure. To further make the training more efficient and scalable, we also propose a fast coordinate descent method for solving the optimization problem at each boosting iteration. The proposed coordinate descent method is conceptually simple and easy to implement in that it is a closed-form solution for each coordinate update. Experimental results on a variety of datasets show that, compared to a range of existing multi-class boosting methods, the proposed method has much faster convergence rate and better generalization performance in most cases. We also empirically show that the proposed fast coordinate descent algorithm needs less training time than the MultiBoost algorithm in Shen and Hao [1].
منابع مشابه
A new boosting algorithm based on dual averaging scheme
The fields of machine learning and mathematical optimization increasingly intertwined. The special topic on supervised learning and convex optimization examines this interplay. The training part of most supervised learning algorithms can usually be reduced to an optimization problem that minimizes a loss between model predictions and training data. While most optimization techniques focus on ac...
متن کاملMulticlass Boosting: Theory and Algorithms
The problem of multi-class boosting is considered. A new framework, based on multi-dimensional codewords and predictors is introduced. The optimal set of codewords is derived, and a margin enforcing loss proposed. The resulting risk is minimized by gradient descent on a multidimensional functional space. Two algorithms are proposed: 1) CD-MCBoost, based on coordinate descent, updates one predic...
متن کاملA coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training
Support vector machines (SVMs) training may be posed as a large quadratic program (QP) with bound constraints and a single linear equality constraint. We propose a (block) coordinate gradient descent method for solving this problem and, more generally, linearly constrained smooth optimization. Our method is closely related to decomposition methods currently popular for SVM training. We establis...
متن کاملFunctional Bundle Methods
Recently, gradient descent based optimization procedures and their functional gradient based boosting generalizations have shown strong performance across a number of convex machine learning formulations. They are particularly alluring for structured prediction problems due to their low memory requirements [5], and recent theoretical work has show that they converge fast across a wide range of ...
متن کاملPartial Linearization Based Optimization for Multi-class SVM
We propose a novel partial linearization based approach for optimizing the multi-class svm learning problem. Our method is an intuitive generalization of the Frank-Wolfe and the exponentiated gradient algorithms. In particular, it allows us to combine several of their desirable qualities into one approach: (i) the use of an expectation oracle (which provides the marginals over each output class...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012